
International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 131
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Temperature Control Using Modbus and RS485
Communication Standards

1Dr.S.P.Vimal, 2R.D.Vandana

1Associate Professor, 2IV year B.E,
Department of ECE, Sri Ramakrishna Engineering College, Coimbatore.

1vimal.sp@srec.ac.in, 2vandana.1302238@srec.ac.in

Abstract – This paper reports developing a system
which emulates a curing process chamber found
in many industry settings. Based on industry
utilization of bus protocols, it has been determined
that the de facto standard Modbus protocol under
the industry recommended standard interface
RS485 is an appropriate communication method
for this closed-loop control system. This paper will
outline and discuss the implementation of these
standards within this system and will also explain
the differences between an established and De
facto standard and why this is important when
deciding which protocols should be implemented
for a particular project.

I. INTRODUCTION
The Engineering Technology and Industrial
Distribution Department at Texas A&M University is
pursuing an initiative to integrate curriculum from
Electronics Engineering Technology, Mechanical and
Manufacturing Engineering Technology and Nuclear
Engineering to create a Power Engineering
Technology program. In addition to developing new
courses for this path of study, existing courses are
being redeveloped. In the Electronics Engineering
Technology Program, the Instrumentation and
Control Systems course is being restructured to focus
on a systems-level development process. In the
power industry, master and multi-slave control over a
standardized architecture is a prime example of
changes in the program. A team enrolled in the
Instrumentation and Control Systems course has
undertaken a project to develop a system which will
be used to facilitate the laboratory requirement for
this course. This project will also provide a reference
design for future students learning similar
communication systems.

II. SYSTEM OVERVIEW
The temperature control system, depicted in Figure 1,
emulates a curing process chamber found in many
industry settings. The system reads the temperature
of the chamber and adjusts it to track a set of user-
defined temperatures. It consists of a single master
and two slaves that together monitor and controls the
temperature of the chamber. One slave communicates

with the master to control environment temperature
using a heat source and fan, and the other slave
consists of a temperature sensor and the signal
conditioning circuit necessary for data collection
from the chamber. Using both de facto and
established standards, Modbus and RS485, the master
communicates the necessary information to each
slave to complete the temperature control system.
The team was responsible for creating the signal
conditioning slave referred to as Slave 1. Slave 1
includes a thermistor, signal conditioning circuitry
and an embedded microcontroller which
communicates with the master computer to provide
the temperature of the chamber. Slave 2 is a laptop
with a data acquisition card, or DAQ, running a
LabVIEW Modbus Virtual Instrument (VI).
Modifications to the LabVIEW VI incorporate the
control for heating and cooling sources which are the
chamber temperature control devices. Finally, a
Master LabVIEW VI is hosted on a desktop
computer to accept curing profiles entered by the
user. The Master VI is modified to include an array
of user-defined time and temperature settings.
Operating together, the Master and two slaves, along
with the temperature chamber, create the closed-loop
control system.

Fig.1 Conceptual System

IJSER

http://www.ijser.org/
mailto:1vimal.sp@srec.ac.in
mailto:2vandana.1302238@srec.ac.in

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 132
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

III. TEMPERATURE SENSING
Upon request from the Master, Slave 1 must provide
a current and accurate temperature reading for the
chamber. Slave 1 can be divided into analog and
digital sections. Slave 1 includes temperature-
sensing, conversion, conditioning circuitry, analog-
to-digital conversion and Modbus message framing.
Figure 2 shows a functional block diagram of how
this is achieved.

Fig.2 Slave 1 Functional Block Diagram

Analog Section
The following constraints were used to develop the
conditioning circuit:
1) System power: One nine-volt battery
2) 0 – 3.3 volts operational range for microcontroller
(Microchip PIC24 series) and RS485 transceiver chip
(Linear Technology LTC2855)
3) 0.3 – 3 volts at respective minimum and maximum
temperature (0° to 100°) levels to provide a 20
percent buffer for the A/D
4) A/D Conversion
5) Master-to-Slave communications software
development.

Since Slave 1 is powered by a nine-volt battery, a
voltage regulator providing 3.3 volts is required to
provide stable power to the ICs on the board and
serve as the voltage reference for the conversion
process which in this case is a Wheatstone bridge.
Next, the Wheatstone bridge produces a differential
voltage based on the thermistor and resistor network
configuration. The thermistor allows the Wheatstone
bridge differential output voltage to change based on
the temperature of the environment. These two
voltages are received by an Instrumentation
Amplifier allowing a first-stage gain. Complementing
this gain is an Offset Amplifier that offsets the
voltage received by the Instrumentation Amplifier

meeting the specific constraints. The conversion,
which is performed by the microcontroller, takes the
analog voltage and converts it to a digital ten-bit
value which is then converted to a temperature based
on a software implemented algorithm. Finally, a
message using Modbus protocol is created,
encapsulating the temperature measurement.

Temperature Sensor
The majority of Slave 1’s responsibility is to use a
thermistor to sense the temperature of the curing
chamber. Since the change in temperature is
inversely proportional to the change in resistance of
the thermistor (as temperature rises, resistance
decreases), data was collected to characterize the
sensor. Data collected from this experiment was
provided from 0°C to 100°C as well as the
corresponding resistance values in kilo-ohms.
Figure 3 depicts the data and relationship of
temperature versus resistance.

Fig.3 Resistance Vs Temperature Characterization Results

The resistance value of the thermistor is converted to
a voltage and eventually conditioned to fit a given
range. This process is referred to as signal
conditioning. Upon configuration of the entire analog
section of the circuit, we needed to characterize the
change in the final voltage output as it related to the
change of temperature.
As shown in Figure 4, the characterization allows for
the formulation of a sixth-order polynomial equation
which was used in software to give the proper
temperature value of the chamber by using the final
conditioned voltage.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 133
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Fig.4 Temperature Vs Voltage Characterization Results

Digital Section
With the analog signal conditioning circuit design
completed, the PIC24 was now ready to receive the
voltage related to the temperature sensed in the
environment.

Analog-to-Digital Conversion
Once an analog voltage was provided to the
microcontroller’s A/D, the ten-bit conversion process
within the PIC24 was utilized to convert the analog
voltage to a digital value. The voltage from the
conditioning channel was converted by the PIC24’s
A/D using the voltage-to-temperature polynomial
equation, representing the temperature reading.

IV. SYSTEM COMMUNICATION
USING MODBUS AND RS485
STANDARDS

The first decision when implementing this system
was to decide how communications would be
achieved between the master and slaves using
specific standards. In this case, Modbus protocol over
RS485 would be most applicable because of their
wide uses in industry to perform multipoint
communication, as well as their open source
availability, requiring no royalties for use. Specific to
technical standardization, there are differing forms of
recognition. Two of these forms include de facto and
de jure standards. It is important to understand the
distinction between the two when starting to develop
a project where standards are utilized.

De facto vs. De jure Standards
Although Modbus is a widely used protocol in
industry, it is not recognized as a formally adopted
standard in the way RS485 is. Modbus is a serial
communications protocol that was originally created
in 1979 by Modicon and has since become a de facto
standard through its use in many commercial
electronic devices. A de facto standard is, by
definition, a custom or product that has achieved
dominance through public acceptance and use. A

good example of a de facto standard is the Windows
operating system or the Mozilla Firefox web browser.
On the other hand, a de jure standard (i.e. RS485) has
been reviewed by organizations such as the
International Organization for Standardization (ISO)
and legally accepted. The goals of these
organizations are to establish at least four levels of
standardization when reviewing: compatibility,
interchangeability, commonality, and reference. What
all four of these levels try to accomplish is to create
interoperability between products and universal
agreement on its use in the industry. For example,
ISO standards are first developed in response to a
need, usually expressed by an industry sector. After
being proposed by that sector, the ISO must formally
recognize and agree to proceed to the first phase of
standardization, defining the technical scope of the
standard. This is usually carried out by experts in the
area in which the standard is to be applied. Once
agreement is reached on the scope of the standard,
the second phase begins in which multiple countries
begin negotiating the specifications of the standard.
Once a consensus is reached, a two-thirds approval
by the ISO members involved in the standardization
process as well as seventy five percent of all
members who vote is needed. Only after all these
criteria are met does a standard become recognized as
an ISO international standard. RS485 is one of those
de jure standards, and is recognized by the Electronic
Industries Alliance or EIA, a trade organization for
electronics manufacturers in the United States. They
are accredited by the American National Standards
Institute (ANSI) to develop standards for consumer
electronics and telecommunications. They have a
very similar procedure as the ISO for the
development of standards in that a consensus must be
reached on the scope and specifications of the
standard as well as approval by the majority of EIA
and ANSI members involved in the process. In
addition, the standard is reviewed every five years to
guarantee it still maintains the four levels of
standardization. Table 1 shows some of the
advantages and disadvantages each type of standard
offers.
 Advantages Disadvantages
De Facto 1.Widely used and

accepted
2.Often proprietary
3.Lots of different
options

1. Controlled by a
single vendor
2.Not recognized
by standard
committees
3.Offers less
interoperability

De Jure 1.High quality
2.Widely recognized
3.Vendor neutral

1.Strict reviewing
process

Table.1 De facto vs. De jure comparisons

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 134
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Modbus Protocol
Modbus is a communication protocol which supports
master to multi-slave communications between
electronic devices. In a standard Modbus network,
there is one master and up to 247 slaves -- each with
a unique slave address from 1 to 247. In the current
configuration, there is one master and two slaves.
Data is stored through the use of coils and registers.
Coils store simple binary values while registers store
numerical values. Both coil and register values are
stored in tables having specific addresses relating to
the stored values. This relationship allows for the
proper message to be framed under the Modbus
protocol.

Modbus RTU vs. Modbus ASCII
Figure 6, the Master Temperature Controller VI Front
Panel, shows a selector called “Slave X Parameters.”
This selector contains a “Mode” dropdown menu
requesting Slave mode options: ASCII or RTU.
While the choice is arbitrary, there are differences
between the two modes. Modbus RTU sends bytes
consecutively with no space in between them. Any
delay between bytes will cause Modbus RTU to
interpret it as the start of a new message. This keeps
Modbus RTU from working properly with modems.
Modbus ASCII marks the start of each message with
a colon character ":" (3A16). The end of each
message is terminated with the carriage return and
line feed characters (0D16, 0A16). This allows the
space between bytes to be variable making it suitable
for transmission through some modems. Modbus
RTU requires that each byte is sent as a string of
eight binary characters framed with a start bit, and a
stop bit, making each transmission ten bits in length.
In ASCII, the number of data bits is reduced from
eight to seven. A parity bit is added before the stop
bit which keeps the transmission size at ten bits. In
Modbus ASCII, each data byte is split into the two
bytes representing the two ASCII characters in the
Hexadecimal value. For example, Table 2 displays
RTU vs. ASCII Modbus mode data representation.
Modbus
Mode

Data ASCII
Data

Hex
Data

Binary
Data

Modbus
RTU

® ® AE 1010
1110

Modbus
ASCII

® A, E 41,45 0100
0001,
0100
0101

Table .2 Modbus RTU vs. ASCII example

The range of data bytes in Modbus RTU can be any
characters from 0016 to FF16, while Modbus
ASCII’s range of data bytes represents only the

sixteen hexadecimal characters. Therefore, every data
byte in Modbus ASCII must be one of those sixteen.

Modbus Message Formatting
The following are examples of Master Request/Slave
Response for writing and reading to Coils and
Registers using Modbus protocol. The key below
gives a description of the parts found in the
messages.
Key:

SLV: Slave Address (1 byte)
FUN: Function Code (1 byte)
DATA ADR: Data Address of First Coil/Register (2
bytes)
#COILS: Number of Coils to Write/Request to/from
the Slave (1 byte)
#REG: Number of Registers to Write/Request
to/from the Slave (1 byte)
#BYTES: Number of Bytes to Follow (1 byte)
COILS: Coil Values to Write/Read (1 bit)
REG: Register Values to Write/Read (2 bytes)
CRC: Cyclic Redundancy Check (2 bytes)

Writing Coils (Function code – 0F for writing
multiple coils)
Master Request:
Sent in the form: (SLV FUN DATA ADR #COILS
#BYTES COILS CRC)
Slave Response:
Sent in the form: (SLV FUN DATA ADR #COILS
CRC)

Reading Coils (Function code – 01 for reading coils)
Master Request:
Sent in the form: (SLV FUN DATA ADR #COILS
CRC)
Slave Response:
Sent in the form: (SLV FUN #BYTES COILS CRC)

Writing Registers (Function code – 16 for writing
multiple registers)
Master Request:
Sent in the form: (SLV FUN DATA ADR #REG
#BYTES REG CRC)
Slave Response:
Sent in the form: (SLV FUN DATA ADR #REG
CRC)

Reading Registers (Function code – 04 for reading
registers)
Master Request:
Sent in the form: (SLV FUN DATA ADR #REG
CRC)
Slave Response:
Sent in the form: (SLV FUN #BYTES REG CRC)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 135
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Modbus Error Checking
There are two types of errors that could possibly
occur during communication using Modbus.
1. The request is received by the slave with a CRC
error. When this occurs, the slave ignores the request
and sends no response.
2. The request is received by the slave without any
error, but cannot proceed for another unknown
reason. When this occurs, the slave replies with an
exception response.
The exception response that occurs in the second case
consists of a single byte that replaces the byte(s) after
the function code but before the CRC. These
exception codes range from 01 to 08 that correspond
to errors. For example, an illegal function code being
sent to a slave device.

RS485 Interface
RS485 provides the physical interface between the
master and slaves. Referring to Figure 5, this
interface provides a multipoint serial channel that
allows communication between multiple devices.
Since it is a four wire, 120Ω terminated interface, it
uses two sets of receive (Rx) and transmit (Tx) lines.
Tx+/Tx- on the slaves are connected to Rx+/Rx- on
the master, and Rx+/Rx- on the slave are connected
to Tx+/Tx- on the master. The effect of this wiring
scheme is that the master is able to communicate with
all slaves, and all slaves are able to communicate
with the master. However, no slave is able to talk to
any other slave directly. Information required by one
slave from another must go through the master first to
be relayed or processed for the next slave.

Fig.5 RS485 4-wire interface setup6
Utilization of Modbus and RS485 in Slave 1
In utilizing both communication standards, specific
messages are structured between the Master and
Slave 1. The first example is what is requested by the
Master to Slave 1 and stays consistent throughout
communication. This is the Master asking for the
temperature from Slave 1. The second example is
how Slave 1 responds to the Master’s request and
contains the actual temperature value of the chamber
received from the A/D of the PIC24. Both of these
messages end with cyclic-redundancy checking, or

CRC, that are calculated based on a look-up table in
the software.
Master Request: Read Registers from Slave 1
Example: 01 04 0000 0001 31CA
01 = Address of Slave 1
04 = Read Multiple Registers (Function Code)
0000 = Data Address of the First Register
0001 = Number of Registers Requested
CRC = 31CA
Slave 1 Response: Send Temperature back to Master
Example: 01 04 02 0032 E4D2
01 = Address of Slave 1
04 = Read Multiple Registers (Function Code)
02 = Number of Data Bytes to Follow
0032 = Contents of Register (Temperature Value)
CRC = E4D2
Interpreting the Master Request was the first
objective in creating the software code for Slave 1.
The beginning of the sequence starts with Slave 1
listening for a request from the Master. Upon
receiving an appropriate request, Slave 1 scans the
message looking for the Function Code 04 as
discussed in the Master Request above. Once that
message is confirmed by the PIC microcontroller, it
acquires a voltage at its A/D port and converts it to
the chamber’s temperature, based on a look-up table.
A Modbus message is framed with the corresponding
CRC bits that are needed for the specific message.
The message or response that is sent back to the
Master is similar to the example for Slave 1’s
Response. This message is sending the temperature
of 50°C, which is 0x32 in hexadecimal, framed with
a CRC of E4D2 fulfilling the Master’s request. The
PIC24’s UART transmission hardware is used for
serial communication. With the addition of an RS485
transceiver chip which converts the UART signals
into CMOS logic-level signals, transmission on the
RS485 interface is possible. The software and
interface hardware together allow Slave 1 to
effectively communicate with the Master.

Utilization of Modbus and RS485 in Slave 2
Slave 2 serves as the controller for the heating and
cooling elements. In modifying National Instrument’s
Modbus Slave VI, an additional set of controls have
been added allowing the slave to receive information
from the Master VI and also use the data for control.
Based on the type of Modbus message that is
received, the Slave extracts the coil or register values
from the message(s) and relays them to the DAQ for
use in controlling the chamber elements. The Slave 2
VI has been modified to receive two coils,
referencing the two light bulbs providing heat by
turning them on or off. Registers, referencing the
duty cycle of the fan, have been modified to control
fan speed to cool the system.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 136
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Utilization of Modbus and RS485 in Master
The Master serves as the bridge between sensing
(Slave 1) and controlling (Slave 2) the chamber
temperature. The Master first requests the chamber
temperature value from Slave 1 and then, based on
Slave 1’s response, compares that value to the pre-
defined user profile. This profile allows control of the
temperature in the chamber by altering it through
user-defined time and temperature settings. Figure 6
represents the front panel of the Master VI. The
Modbus protocol implemented in the previous Slave
1 section requests and reads the temperature of the
chamber from Slave 1. The Master, unlike Slave 1, is
not responsible for message framing. This framing is
done internally by LabVIEW. However, a control
sequence that reads the register values from Slave 1
containing the chamber temperature was needed to be
created. Based on that value, the Maser writes the
coil and register values to Slave 2 needed to control
the chamber temperature.

Fig.6 Master Temperature controller VI front panel

When running the Master VI, the initial temperature
of the chamber is read from Slave 1 and stored in the
Initial Temp indicator. This is simply the starting
temperature at which the profile begins its pseudo-
curing process. The Time table in the left column
represents time values at which the temperature in the
Target Temp indicator is sustained. The Target Temp
is based on the initial temperature plus the value
found in the Temp table in the When running the
Master VI, the initial temperature of the chamber is
read from Slave 1 and stored in the Initial Temp
indicator. This is simply the starting temperature at
which the profile begins its pseudo-curing process.
The Time table in the left column represents time
values at which the temperature in the Target Temp

indicator is sustained. The Target Temp is based on
the initial temperature plus the value found in the
Temp table in the right column. For the example in
Figure 6, the Initial Temp box will display the
temperature read from Slave 1 and will immediately
know to raise that temperature by 5 degrees Celsius
and maintain it for 90 seconds. All of this
information is relayed to Slave 2 to control the light
bulbs and fan speed maintaining that temperature.
After a value of 90 seconds appears in the Elapsed
Time indicator, that stage of the profile is complete.
The Target Temp indicator will then add 10 degrees
to its current value and hold it for 60 seconds, and the
process repeats for the remaining stages of the
profile. At all points during this process, the user may
view the current temperature, as it is maintained, in
the Read Temp indicator. Putting a 0 in the Time
table indicates the final stage, and once it is reached,
the VI will know to end, and the pseudo-curing
process is complete.

V. CONCLUSION
The sequence of receiving the chamber temperature,
creating the control, and applying the controlling
instructions works flawlessly in highlighted
execution or step mode in LabVIEW. However, it
was found that when running in continuous mode
there are timing issues that prevent the operation
from running smoothly. Based on the troubleshooting
performed both by this development team as well as
the professor, the problem was narrowed down to the
switching of communication from one slave to the
other. Upon receiving the temperature from Slave 1,
the Master’s instructions began a sequence that,
based on whether or not the temperature needs to be
increased or decreased, will send the corresponding
coil and register values to Slave 2. Slave 2, however,
never received these values. As mentioned earlier,
this project is now being fully implemented as the lab
requirement for the Instrumentation and Control
Systems course. Each semester, the new class of
students will have a chance to work on the system
develop by this project. They will not only be making
improvements to this system, but they will also be
taking the initiative to expand on it. Additions so far
include several more sensing slaves added to the
system allowing for a more precise detection of
temperature over a wider area.

The Modbus and RS485 standards are very useful in
many applications for multipoint serial
communication. The Engineering Technology and
Industrial Distribution Department at Texas A&M
University has taken the initiative to help
undergraduates utilize such standards in many of
their class projects. Through a small restructuring

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 137
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

process, the Instrumentation and Control Systems
course has undergone many changes in the area of
applied theory, focusing on the design and
development of a system from the theory taught in
the classroom. This approach to experiential learning
using industry-grade toolsets and employing relevant
standards adds significant value to the students’
education. Utilizing standardized protocols such as
Modbus and RS485 is but one of the many ways the
department prepares its students for entry-level
positions within industry.

REFERENCES

[1] Modbus Organization (2012). Modbus Application Protocol
Specification v1.1a [Online]. Available:
http://www.modbus.org/docs/Modbus_Application_Protocol_V1_
1a.pdf [Jun. 24, 2015].
[2] Modbus Organization (2012). MODBUS over Serial Line
Specification & Implementation guide V1.0 [Online]. Available:
http://www.modbus.org/docs/Modbus_over_serial_line_V1.pdf
[Jun. 24, 2015].
[3] FreeMODBUS stack, http://www.freemodbus.org/
[4] B.B.Shabarinath and Nidhi Gaur, "MODBUS communication
in microcontroller based elevator controller", IEEE International
Conference on Control, Automation, Robotics and Embedded
Systems (CARE),pp.1 - 5, Dec 2013

IJSER

http://www.ijser.org/

